Why and whence the Hilbert space in quantum theory?
نویسندگان
چکیده
We explain why and how the Hilbert space comes about in quantum theory. The axiomatic structures of vector space, scalar product, orthogonality, linear functional are derivable from statistical description micro-events Hilbertian sum squares $|\mathfrak{a}_1|^2+|\mathfrak{a}_2|^2+\cdots$. latter leads (non-axiomatically) to standard writing Born formula $\mathtt{f} = |\langle\psi|\varphi\rangle|^2$. As a corollary, status Pythagorean theorem, concept length, 6-th problem undergo `revision'. An issue deriving norm topology may no have short-length solution (too many abstract math-axioms) but is likely solvable affirmative; reformulated as mathematical one.
منابع مشابه
Hilbert Space Theory and Applications in Basic Quantum Mechanics
We explore the basic mathematical physics of quantum mechanics. Our primary focus will be on Hilbert space theory and applications as well as the theory of linear operators on Hilbert space. We show how Hermitian operators are used to represent quantum observables and investigate the spectrum of various linear operators. We discuss deviation and uncertainty and brieáy suggest how symmetry and r...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولHilbert Space Quantum Mechanics
1 Vectors (Kets) 1 1.1 Dirac notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Qubit or spin half . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Intuitive picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 General d . . . . . . . . . . . . . . . . . . ...
متن کاملElementary Hilbert Space Theory
A Hilbert Space is an inner product space that is complete. Let H be a Hilbert space and for f, g ∈ H, let 〈f, g〉 be the inner product and ‖f‖ = √ 〈f, f〉. (1.1) We will consider Hilbert spaces over C. Most arguments go through for Hilbert spaces over R, and the arguments are simpler. We assume that the reader is familiar with some of the basic facts about the inner product. Let us prove a few t...
متن کاملQuantum Mechanics beyond Hilbert Space
When describing a quantum mechanical system, it is convenient to consider state vectors that do not belong to the Hilbert space. In the rst part of this paper, we survey the various formalisms have been introduced for giving a rigorous mathematical justiication to this procedure: rigged Hilbert spaces (RHS), scales or lattices of Hilbert spaces (LHS), nested Hilbert spaces, partial inner produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2023
ISSN: ['1879-1662', '0393-0440']
DOI: https://doi.org/10.1016/j.geomphys.2023.104779